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Relation extraction: Problems

■ Quality and accuracy of extracted relations critical

■ Neural-network-based methods achieve state-of-the-art results

■ problem: they are data-intensive

In practical scenarios

■ Limited amount of supervised (labeled) data

■ Model creation solely from task-specific data

Issue

■ Insufficient data to reliably model robust patterns

→ Poor generalization

Problem statement
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■ Complexity: multiple systems (feature extractors), task-specific model architecture

■ Error propagation: errors can propagate and accumulate

■ Limited portability: domain and language dependence

■ A-priori feature selection: features selected before training

Problem statement

State-of-the-art: Challenges
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Distant supervision
Sequential transfer learning for RE - Algorithm

Knowledge 
Base

Data

Jonathan 
Lethem Brooklyn

PlaceLived

“Non-connectivity becomes a commodity , something 
to cherish, '' said Jonathan Lethem, a Brooklyn novelist 
and a new MacArthur fellow.

In Brooklyn, they ask when you're going on Charlie 
Rose and if you know Jonathan Lethem.

You could say that only the dead, and Jonathan 
Lethem, know Brooklyn.
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Extension to distantly supervised data
Sequential transfer learning for RE - Algorithm
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Parameter estimation
Sequential transfer learning for RE - Algorithm

Relation extraction objective

Language model objective

Maximum likelihood estimate
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Datasets
Sequential transfer learning for relation extraction
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The measure included Aerolineas's domestic subsidiary, Austral.
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The key was in a chest.

content-container

TACRED

SemEval 2010
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Evaluation
Sequential transfer learning for relation extraction

Hypothesis:

The proposed method performs equal or better than baselines that rely on explicit features.

Experiment setup:

■ Initialize the model (with parameters from OpenAI GPT [Radford et al., 2018])

■ Fine-tune on the respective dataset

■ Evaluate overall performance and data efficiency

Metrics:

■ Performance: Precision, Recall, F1 score, P-R curve, area under the curve

■ Data efficiency: F1 score over percentage of training data
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TACRED: Data efficiency
Sequential transfer learning for RE - Experiments
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Distantly supervised RE: Results
Sequential transfer learning for RE - Experiments
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Baselines: Mintz
State-of-the-art system: RESIDE
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Conclusion

■ State-of-the-art sequential transfer learning systems for RE

■ Language models capture more syntactic than semantic knowledge

■ Improved performance on infrequently observed relations (long-tail)
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Outlook

■ Improve acquisition and reuse of relevant knowledge

■ Investigate other pre-training and multi-task learning strategies

■ Combine models for distantly supervised data

■ Further improvements require better understanding of models, datasets, and the task



Thank you!

Publications

● Improving Relation Extraction by Pre-trained Language Representations. Christoph Alt*, 
Marc Hübner* and Leonhard Hennig. AKBC 2019

● Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation 
Extraction. Christoph Alt, Marc Hübner and Leonhard Hennig. ACL 2019

● Probing Linguistic Features of Sentence-Level Representations in Neural Relation 
Extraction. Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. ACL 2020

● TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task. 
Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. ACL 2020.
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