# Neural sequential transfer learning for relation extraction



# Christoph Alt

November 30, 2020



Chair: Prof. Dr. Klaus Obermayer

Supervisor: Prof. Dr.-Ing. Sebastian Möller

Reviewer: Prof. Dr. Hans Uszkoreit

Prof. Dr.-Ing. Alan Akbik

## Outline

- Motivation & background
- Problem statement
- Objectives and contributions
- Sequential transfer learning for neural relation extraction
  - Approach
  - Evaluation
  - Experiments
- Conclusion
- Outlook













# Relation extraction

## Relation extraction

detect and retrieve relational information from unstructured text

## Relation extraction

detect and retrieve relational information from unstructured text

Intel is based in Santa Clara.

## Relation extraction

detect and retrieve relational information from unstructured text



## Relation extraction

detect and retrieve relational information from unstructured text



## Relation extraction

detect and retrieve relational information from unstructured text



#### VS.



## Relation extraction

detect and retrieve relational information from unstructured text



#### VS.









## Relation extraction: Problems

- Quality and accuracy of extracted relations critical
- Neural-network-based methods achieve state-of-the-art results.
  - problem: they are data-intensive

## Relation extraction: Problems

- Quality and accuracy of extracted relations critical
- Neural-network-based methods achieve state-of-the-art results
  - problem: they are data-intensive

## In practical scenarios

- Limited amount of supervised (labeled) data
- Model creation solely from task-specific data

## Relation extraction: Problems

- Quality and accuracy of extracted relations critical
- Neural-network-based methods achieve state-of-the-art results
  - problem: they are data-intensive

## In practical scenarios

- Limited amount of supervised (labeled) data
- Model creation solely from task-specific data

#### Issue

- Insufficient data to reliably model robust patterns
- → Poor generalization













# State-of-the-art: Challenges

**Complexity:** multiple systems (feature extractors), task-specific model architecture

- Complexity: multiple systems (feature extractors), task-specific model architecture
- **Error propagation:** errors can propagate and accumulate

- **Complexity:** multiple systems (feature extractors), task-specific model architecture
- **Error propagation:** errors can propagate and accumulate
- **Limited portability:** domain and language dependence

- Complexity: multiple systems (feature extractors), task-specific model architecture
- Error propagation: errors can propagate and accumulate
- Limited portability: domain and language dependence
- A-priori feature selection: features selected before training

















Develop better performing and more data-efficient neural relation extraction methods



Develop better performing and more data-efficient neural relation extraction methods

#### **Main contributions**

Sequential transfer learning for supervised relation extraction

C. Alt\*, M. Hübner\*, L. Hennig. "Improving Relation Extraction by Pre-trained Language Representations". **AKBC 2019**.

Combining sequential transfer learning and distant supervision

C. Alt, M. Hübner, L. Hennig. "Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction". **ACL 2019**.



#### **Main contributions**

Sequential transfer learning for supervised relation extraction

C. Alt\*, M. Hübner\*, L. Hennig. "Improving Relation Extraction by Pre-trained Language Representations". **AKBC 2019**.

Combining sequential transfer learning and distant supervision

C. Alt, M. Hübner, L. Hennig. "Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction". **ACL 2019**.



#### **Main contributions**

#### Sequential transfer learning for supervised relation extraction

C. Alt\*, M. Hübner\*, L. Hennig. "Improving Relation Extraction by Pre-trained Language Representations". **AKBC 2019**.

#### Combining sequential transfer learning and distant supervision

C. Alt, M. Hübner, L. Hennig. "Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction". **ACL 2019**.

#### Analyzing captured linguistic knowledge

C. Alt, A. Gabryszak, L. Hennig. "Probing Linguistic Features of Sentence-Level Representations in Neural Relation Extraction". **ACL 2020**.

#### Fine-grained analysis of model errors and datasets

C. Alt, A. Gabryszak, L. Hennig. "TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task". **ACL 2020**.



#### **Main contributions**

#### Sequential transfer learning for supervised relation extraction

C. Alt\*, M. Hübner\*, L. Hennig. "Improving Relation Extraction by Pre-trained Language Representations". **AKBC 2019**.

#### Combining sequential transfer learning and distant supervision

C. Alt, M. Hübner, L. Hennig. "Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction". **ACL 2019**.

#### Analyzing captured linguistic knowledge

C. Alt, A. Gabryszak, L. Hennig. "Probing Linguistic Features of Sentence-Level Representations in Neural Relation Extraction". **ACL 2020**.

#### Fine-grained analysis of model errors and datasets

C. Alt, A. Gabryszak, L. Hennig. "TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task". **ACL 2020**.

### Sequential transfer learning for RE

# Algorithm

#### Sequential transfer learning for RE

# Algorithm



#### Sequential transfer learning for RE

## Algorithm



### Model architecture



### Model architecture



#### Model architecture



# Input format



# Input format



## Input format



# Distant supervision

# Distant supervision



### Distant supervision



### Extension to distantly supervised data



### Extension to distantly supervised data



### Extension to distantly supervised data



### Parameter estimation

#### Parameter estimation

#### **Relation extraction objective**

$$L_{rel}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \log P(r_i | t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)$$

#### Parameter estimation

#### Relation extraction objective

$$L_{rel}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \log \frac{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}$$



 $f_R(f_M(\ldots;\theta_M);\theta_R)$ 

### Parameter estimation

#### Relation extraction objective

$$L_{rel}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \log \frac{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}$$



 $f_R(f_M(\ldots;\theta_M);\theta_R)$ 

#### Language model objective

$$L_{lang}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \sum_{j=1}^{|T_i|} \log P(t_j | t_{j-1}, \dots, t_1)$$

#### Parameter estimation

#### **Relation extraction objective**

$$L_{rel}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \log \frac{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}$$



#### Language model objective

$$L_{lang}(\mathcal{D}) = \sum_{i=1}^{|D|} \sum_{j=1}^{|T_i|} \log \frac{P(t_j|t_{j-1}, \dots, t_1)}{P(t_j|t_{j-1}, \dots, t_1)}$$



$$f_L(f_M(\ldots;\theta_M);\theta_L)$$

#### Parameter estimation

#### **Relation extraction objective**

$$L_{rel}(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} \log \frac{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}{P(r_i|t_i^1, \dots, t_i^{|T_i|}, head_i, tail_i)}$$

$$f_R(f_M(\ldots;\theta_M);\theta_R)$$

#### Language model objective

$$L_{lang}(\mathcal{D}) = \sum_{i=1}^{|D|} \sum_{j=1}^{|T_i|} \log \frac{P(t_j|t_{j-1}, \dots, t_1)}{P(t_j|t_{j-1}, \dots, t_1)}$$



#### Maximum likelihood estimate

$$L(\mathcal{D}) = L_{rel}(\mathcal{D}) + \frac{\lambda}{\lambda} * L_{lang}(\mathcal{D})$$

$$\hat{\theta} = \arg\max_{\theta} L(\mathcal{D}; \theta), with \ \theta = \{\theta_M, \theta_R, \theta_L\}$$

#### **Datasets**

| Dataset             | Examples    | Neg. examples (%) | Relations | Supervision |
|---------------------|-------------|-------------------|-----------|-------------|
| SemEval 2010 Task 8 | 10,717      | 17.4%             | 19        | traditional |
| TACRED              | 106,264     | 79.5%             | 42        | traditional |
| NYT-10              | $522,\!611$ | -                 | 53        | distant     |

### **Examples**



### **Evaluation**

#### **Evaluation**

#### Hypothesis:

The proposed method performs equal or better than baselines that rely on explicit features.

#### **Evaluation**

#### Hypothesis:

The proposed method performs equal or better than baselines that rely on explicit features.

#### Experiment setup:

- Initialize the model (with parameters from OpenAI GPT [Radford et al., 2018])
- Fine-tune on the respective dataset
- Evaluate overall performance and data efficiency

#### **Evaluation**

#### Hypothesis:

The proposed method performs equal or better than baselines that rely on explicit features.

#### Experiment setup:

- Initialize the model (with parameters from OpenAI GPT [Radford et al., 2018])
- Fine-tune on the respective dataset
- Evaluate overall performance and data efficiency

#### **Metrics:**

- Performance: Precision, Recall, F1 score, P-R curve, area under the curve
- Data efficiency: F1 score over percentage of training data

## Supervised RE: Results

| TACRED             |      |      |             | SemEval 2010           |      |      |      |
|--------------------|------|------|-------------|------------------------|------|------|------|
| System             | P    | R    | F1          | System                 | P    | R    | F1   |
| $\overline{ m LR}$ | 72.0 | 47.8 | 57.5        | $\overline{	ext{SVM}}$ | _    | _    | 82.2 |
| CNN                | 72.1 | 50.3 | 59.2        | PA-LSTM                | _    | _    | 82.7 |
| PCNN               | 73.6 | 53.4 | 61.9        | C- $GCN$               | _    |      | 84.8 |
| Tree-LSTM          | 66.0 | 59.2 | 62.4        | DRNN                   | _    | _    | 86.1 |
| PA-LSTM            | 65.7 | 64.5 | 65.1        | BRCNN                  | _    |      | 86.3 |
| C- $GCN$           | 69.9 | 63.3 | 66.4        | PCNN                   | 86.7 | 86.7 | 86.6 |
| $\mathbf{TRE}$     | 70.1 | 65.0 | <b>67.4</b> | $\mathbf{TRE}$         | 88.0 | 86.2 | 87.1 |

Baselines: LR, SVM State-of-the-art systems: PCNN, C-GCN, PA-LSTM

## Supervised RE: Results

| TACRED             |      |      | Se   | mEval 2010             |      |      |      |
|--------------------|------|------|------|------------------------|------|------|------|
| System             | P    | R    | F1   | System                 | Р    | R    | F1   |
| $\overline{ m LR}$ | 72.0 | 47.8 | 57.5 | $\overline{	ext{SVM}}$ |      | _    | 82.2 |
| CNN                | 72.1 | 50.3 | 59.2 | PA-LSTM                | _    | _    | 82.7 |
| PCNN               | 73.6 | 53.4 | 61.9 | C- $GCN$               | _    | _    | 84.8 |
| Tree-LSTM          | 66.0 | 59.2 | 62.4 | DRNN                   | _    | _    | 86.1 |
| PA-LSTM            | 65.7 | 64.5 | 65.1 | BRCNN                  | _    | _    | 86.3 |
| C-GCN              | 69.9 | 63.3 | 66.4 | PCNN                   | 86.7 | 86.7 | 86.6 |
| TRE                | 70.1 | 65.0 | 67.4 | TRE                    | 88.0 | 86.2 | 87.1 |



## Supervised RE: Results

| TACRED             |      |      | Se   | mEval 2010             |      |      |      |
|--------------------|------|------|------|------------------------|------|------|------|
| System             | P    | R    | F1   | System                 | P    | R    | F1   |
| $\overline{ m LR}$ | 72.0 | 47.8 | 57.5 | $\overline{	ext{SVM}}$ | _    | -    | 82.2 |
| CNN                | 72.1 | 50.3 | 59.2 | PA-LSTM                | _    | _    | 82.7 |
| PCNN               | 73.6 | 53.4 | 61.9 | C- $GCN$               | _    | _    | 84.8 |
| Tree-LSTM          | 66.0 | 59.2 | 62.4 | DRNN                   | _    | _    | 86.1 |
| PA-LSTM            | 65.7 | 64.5 | 65.1 | BRCNN                  | _    | _    | 86.3 |
| C-GCN              | 69.9 | 63.3 | 66.4 | PCNN                   | 86.7 | 86.7 | 86.6 |
| TRE                | 70.1 | 65.0 | 67.4 | TRE                    | 88.0 | 86.2 | 87.1 |



# TACRED: Data efficiency



### Distantly supervised RE: Results



Baselines: Mintz State-of-the-art system: RESIDE

State-of-the-art sequential transfer learning systems for RE

- State-of-the-art sequential transfer learning systems for RE
- Language models capture more syntactic than semantic knowledge

- State-of-the-art sequential transfer learning systems for RE
- Language models capture more syntactic than semantic knowledge
- Improved performance on infrequently observed relations (long-tail)

Improve acquisition and reuse of relevant knowledge

- Improve acquisition and reuse of relevant knowledge
- Investigate other pre-training and multi-task learning strategies

- Improve acquisition and reuse of relevant knowledge
- Investigate other pre-training and multi-task learning strategies
- Combine models for distantly supervised data

- Improve acquisition and reuse of relevant knowledge
- Investigate other pre-training and multi-task learning strategies
- Combine models for distantly supervised data
- Further improvements require better understanding of models, datasets, and the task

# Thank you!

#### **Publications**

- Improving Relation Extraction by Pre-trained Language Representations. Christoph Alt\*, Marc Hübner\* and Leonhard Hennig. **AKBC 2019**
- Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction. Christoph Alt, Marc Hübner and Leonhard Hennig. ACL 2019
- Probing Linguistic Features of Sentence-Level Representations in Neural Relation Extraction. Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. **ACL 2020**
- TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task. Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. **ACL 2020.**

#### References

- [Zhang et al., 2017] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. Position-aware attention and supervised data improve slot filling. EMNLP, 2017.
- [Hendrickx et al., 2010] Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid O Seaghdha, Sebastian Pado, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. SemEval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. SemEval, 2010.
- [Manning et al., 2014] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. ACL 2014 (System Demonstrations).
- [Radford et al., 2018] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. arXiv 2018.