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Problem statement
Relation extraction: Problems
Quality and accuracy of extracted relations critical
Neural-network-based methods achieve state-of-the-art results
problem: they are data-intensive

In practical scenarios

Limited amount of supervised (labeled) data

Model creation solely from task-specific data
Issue

Insufficient data to reliably model robust patterns

Poor generalization
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State-of-the-art: Challenges

Complexity: multiple systems (feature extractors), task-specific model architecture
Error propagation: errors can propagate and accumulate
Limited portability: domain and language dependence

A-priori feature selection: features selected before training
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relation extraction methods

Main contributions

Sequential transfer learning for supervised relation extraction
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Combining sequential transfer learning and distant supervision
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approaches

Analyzing captured linguistic knowledge

C. Alt, A. Gabryszak, L. Hennig. “Probing Linguistic Features of Sentence-Level
Representations in Neural Relation Extraction”. ACL 2020.

Fine-grained analysis of model errors and datasets

C. Alt, A. Gabryszak, L. Hennig. “TACRED Revisited: A Thorough Evaluation of the

TACRED Relation Extraction Task”. ACL 2020.
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Distant supervision

Knowledge PlaceLived

Base

Jonathan
Lethem

~  Brooklyn

________________________________________________________________________________________

You could say that only the dead, and Jonathan
Lethem, know Brooklyn.

“Non-connectivity becomes a commodity , something
Data to cherish, " said Jonathan Lethem, a Brooklyn novelist
and a new MacArthur fellow.

In Brooklyn, they ask when you're going on Charlie
Rose and if you know Jonathan Lethem.
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Relation extraction objective
D) —
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i=1

Language model objective
D] Ty T
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i=1 j=1

Maximum likelihood estimate

L(D) = Lyet(D) + A % Ligny (D)
0 = arngaXL(D; ), with 0 = {0y7,0R, 0L}
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Datasets

Dataset Examples Neg. examples (%) Relations Supervision
SemEval 2010 Task 8 10,717 17.4% 19 traditional
TACRED 106,264 79.5% 42 traditional
NYT-10 522,611 - 53 distant
Examples

content-container
SemEval 2010 ‘ l
The key was in a chest.

org:subsidiary
TACRED | |
The measure included Aerolineas's domestic subsidiary, Austral.
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Sequential transfer learning for relation extraction
Evaluation

Hypothesis:
The proposed method performs equal or better than baselines that rely on explicit features.
Experiment setup:
Initialize the model (with parameters from OpenAl GPT [Radford et al., 2018])
Fine-tune on the respective dataset
Evaluate overall performance and data efficiency
Metrics:

Performance: Precision, Recall, F1 score, P-R curve, area under the curve

Data efficiency: F1 score over percentage of training data
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TACRED SemEval 2010

System P R F1 System P R Fi1l

LR 72.0 478 57.5 SVM — - 822
CNN 72.1 50.3 59.2 PA-LSTM — — 827
PCNN 73.6 534 61.9 C-GCN — —  84.8
Tree-LSTM 66.0 59.2 624 DRNN - - 86.1
PA-LSTM 65.7 64.5 65.1 BRCNN — - 86.3
C-GCN 69.9 63.3 66.4 PCNN 86.7 86.7 86.6
TRE 70.1 65.0 67.4 TRE 88.0 86.2 87.1

Baselines: LR, SVM
State-of-the-art systems: PCNN, C-GCN, PA-LSTM m
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Supervised RE: Results

TACRED
System P R F1
LR 720 478 575
CNN 721 50.3  59.2
PCNN 73.6 534 619
Tree-LSTM 66.0 59.2 624
PA-LSTM 657 645 65.1
®) C-GCN 69.9 633 66.4
TRE 701 65.0 67.4

Baselines: LR, SVM

State-of-the-art systems: PCNN, C-GCN, PA-LSTM

SemEval 2010

System P R F1

SVM — — 82.2
PA-LSTM - — 82.7
C-GCN — — 84.8
DRNN - — 86.1
BRCNN = — 86.3
PCNN 86.7 86.7 86.6
TRE 88.0 &86.2 87.1
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TACRED: Data efficiency
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35 A —— TRE w/o LM w/o NE + GR masking
—&— PCNN w/o NE + GR masking
—#— PCNN w/ NE + GR masking
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Distantly supervised RE: Results

1.0

DISTRE | AUC: 0.422
RESIDE' | AUC: 0.415
PCNN+ATT* | AUC: 0.342
Mintz? | AUC: 0.106

094

tttt

Precision

059

0.4 1 \‘j/\
0-3 T T T T T T
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&

Baselines: Mintz
State-of-the-art system: RESIDE
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Conclusion

State-of-the-art sequential transfer learning systems for RE
Language models capture more syntactic than semantic knowledge

Improved performance on infrequently observed relations (long-tail)
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Outlook

Improve acquisition and reuse of relevant knowledge
Investigate other pre-training and multi-task learning strategies
Combine models for distantly supervised data

Further improvements require better understanding of models, datasets, and the task
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