

TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task ACL 2020

Christoph Alt, Aleksandra Gabryszak, Leonhard Hennig

German Research Center for AI (DFKI) Speech and Language Technology Lab

Relation Extraction

Relation extraction (RE) is concerned with extracting semantic relations from text

But, what do we do when models fail?

Motivation

- **Goal:** Understand *where* and *why* relation extraction (RE) models fail
- Current state of the art in RE:
 - TACRED [Zhang et al., 2017]: 71.5 F1 [Baldini Soares et al., 2019; Peters et al., 2019]
 - SemEval 2010 Task 8 [Hendrickx et al., 2010]: 91.0 F1 [Li et al., 2020]
 - ACE 2005 [Walker et al., 2006]: 63.2 F1 [Luan et al., 2019]

Problem:

- A single metric, e.g., F1, precision, recall, is insufficient to understand model capabilities
 - \rightarrow Instead, we should focus on errors
- However, difficult to determine the cause
 - → model errors
 - \rightarrow dataset bias
 - \rightarrow annotation errors

Research Questions

- TACRED is one of the largest, most widely used RE benchmarks
- **Observation**: Error rate of almost 30% is still high

Questions

- Is there still room for improvement, and can we identify the underlying factors that contribute to this error rate?
 - To what extent does the quality of crowd based annotations contribute to the error rate?
 - What can be attributed to dataset and models?

Re-Annotation of Challenging Examples

Goal:

Identify most challenging examples (development and test split)

Approach:

- Rank each example according to evidence from 49 different RE model predictions
- Select examples for manual evaluation
 - \rightarrow Challenging \rightarrow misclassified by at least half of the models
 - \rightarrow Control \rightarrow Correctly classified by at least 39 models
- Manual re-annotation of selected examples
 - \rightarrow According to TAC KBP guidelines
 - → With label suggestions, similar to original crowdsourcing

Results (1): Label Error Analysis

	Dev	Dev		Test	
	Challenging	Control	Challenging	Control	
# Examples (# positive) # Revised (# positive)	3,088 (1,987) 1,610 (976)	567 (547) 46 (46)	1,923 (1,333) 960 (630)	427 (407) 38 (38)	
# Revised (% positive)	52.1 (49.1)	8.1 (8.4)	49.9 (47.3)	8.9 (9.3)	

- Overall approx. 5k challenging examples re-annotated
- Approx. 50% of challenging examples were revised (relabeled)
- Only 8% of examples in control were revised

Results (1): Label Error Analysis

	Original	Revised
Model		
CNN, masked	59.5	66.5
TRE	67.4	75.3
SpanBERT	70.8	78.0
KnowBERT	71.5	79.3

- Approx. 8% absolute improvement in F1 score across all models
- Average score across 49 models from 62.1 to 70.1 F1
- State-of-the-art improved to 79.3 F1

Error Categories for Model Misclassifications

Goal:

- Manual explorative analysis of model misclassifications
- Categorization into linguistically motivated error categories

Approach:

- Explore possible linguistic aspects causing incorrect predictions
 - \rightarrow e.g., entity type errors or distracting phrases
- Iteratively develop error categories
- Annotate each misclassification with category

Results(2): Model Error Categories

- 1017 examples, categorized into 9 error categories
- 7 categories related to context, 2 categories related to arguments
- Wrong ArgsAuthorities said they ordered the detention of Bruno's wife
Rodrigues]
tail:per[Dayana per:spouse109Rodrigues]
tail:perwho was found with [Samudio]
head:per's baby109
- Relation Def. [Zhang Yinjun]_{tail:per}, spokesperson with one of China's largest charity organi- $org:top_mem$. 96 zation, the [China Charity Federation]_{head:org}
- Entity Type [Christopher Bollyn]_{head:per} is an [independent]_{tail:religion} journalist per:religion 31
 - Context misinterpretations account for ~96% of errors
 - Argument errors account for ~4% of errors
 - Incorrect assignment of "no relation" is the most common error

Automated Analysis

Goal:

- Attribute errors to dataset or models
- Prevent focusing on hypotheses well handled on average

Approach:

- Extend misclassification categories to testable hypotheses (groups)
 - → Group examples according to attribute, e.g., "has distracting entity in context"
 - → Automatically verifiable on whole dataset split
- Validate whether the hypothesis holds
 - → I.e., group of instances shows an above average error rate
 - \rightarrow Based on the approach of [Wu et al., 2019]

Experimental Setup

Formulate hypotheses (error groups)

Groups	Attributes
Surface structure	argument distance, sentence length
Arguments	head and tail entity type
Context	distracting entities in context
Ground truth	positive examples, excluding "no relation"

- Compare state-of-the-art model error rates per group
 - TRE [Alt et al., 2019] \rightarrow OpenAl GPT
 - SpanBERT [Joshi et al., 2019] \rightarrow BERT, pre-trained on span level
 - KnowBERT [Peters et al., 2019] → BERT, pre-trained jointly with entity linking

Results (3): Per Group Error Rates

- Large fraction of errors caused by two ambiguous groups of relations
 - per:loc

- → expressed in similar context, e.g., *per:cities_of_resid*. vs. *per:countries_of_resid*.
- same_nertag&positive
 - → same argument types, e.g., *per:parents*, *per:children* and *per:other_family*

Conclusion

- Manual re-annotation of 5k most challenging TACRED examples (development and test split)
 - → Release of revised dataset, as patch
- Careful evaluation of development and test splits necessary if dataset is crowdsourced
 - → to ensure progress can be measured accurately
- Models often unable to predict a relation even if clearly expressed
- Models frequently ignore argument roles or ignore sentential context
- Two groups of ambiguous relations mainly responsible for remaining errors

Thank you

TACRED patch and code: <u>https://github.com/DFKI-NLP/tacrev</u>

References

- Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. Position-aware attention and supervised data improve slot filling. EMNLP, 2017.
- Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid O Seaghdha, Sebastian Pado, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. SemEval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. SemEval, 2010.
- Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005 multilingual training corpus. Linguistic Data Consortium, Philadelphia 57, 2006.
- Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching the blanks: Distributional similarity for relation learning. ACL, 2019.
- Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith. Knowledge enhanced contextual word representations. EMNLP, 2019.
- Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari Ostendorf, Hannaneh Hajishirzi. A General Framework for Information Extraction using Dynamic Span Graphs. NAACL, 2019.
- Cheng Li, Ye Tian. Downstream Model Design of Pre-trained Language Model for Relation Extraction Task. arxiv:2004.03786, 2020.
- Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. Errudite: Scalable, reproducible, and testable error analysis. ACL, 2019.
- Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke S. Zettlemoyer, and Omer Levy. Spanbert: Improving pre-training by representing and predicting spans. TACL, 2019.
- Christoph Alt, Marc Hübner, and Leonhard Hennig. Improving relation extraction by pre-trained language representations. AKBC, 2019.