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Relation Extraction

Relation extraction (RE) is concerned with extracting semantic relations from text

? org:subsidiaries
| l org:parents
The measures included Aerolineas’s domestic subsidiary, Austral. &P x
Trd—’ T org:members x
ea al

Neural network-based models have considerably improved RE performance

[Baldini Soares et al., 2019; Peters et al., 2019; Joshi et al., 2019; Li et al., 2020]

But, what do neural network-based models consider relevant for relation prediction?




Motivation

Goal: Understand what aspects of the input neural RE models consider relevant for a prediction

Gain further insights into decision process
|dentify areas for improvement

Crucial to ensure accountability, trust, and fairness
importantin critical domains, e.g., healthcare

Problem:
Nested non-linear structure makes neural networks highly non-transparent

Un- or self-supervised pre-training made models even more complex




Research Questions

What linguistic properties are encoded by neural RE models?
How well do models encode well known features for RE?
How does neural network architecture affect the captured features?
How does additional linguistic information affect the encoded features?

How does this affect performance on the RE task?




Sentence Level Probing Tasks

Probing task adietal, 2017, diagnostic classifier, or auxiliary prediction task
Classifier trained on a set of model’s internal representations
Performance measures how well the information is encoded

Assumption: Information is used for model prediction

Example: Probing of a general sentence encoder [conneau et al, 2018]

Neural network-based encoder I:> Representation How well can we predict
a property of the input
ﬁ from the representation,
e.g., its tense?

The measures included Aerolineas’s domestic subsidiary, Austral.
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Linguistic Probing Tasks for Neural RE

Set of probing tasks for RE - Features that proved useful in earlier work

Surface, syntactic, and semantic properties of sentences with marked entities
Sentences collected from TACRED (zhangetal, 20171 and SemEval 2010 Task 8 [Hendrickx et al., 2010]

Category Properties

Sentence length
Surface Argument distance > number of tokens between mentions
Named entity exists between mentions

Dependency tree depth

Syntactic Shortest dependency path (between mentions) tree depth
Argument order > whether head comes before tail
Part of speech of tokens to the left and right of {head, tail}
N dentity t f{head, tail

Semantic amed entity type of {head, tail}

Grammatical role of {head, tail}




Experimental Setup

Datasets: TACRED and SemEval 2010 Task 8

Fvaluate probing tasks on trained RE models of different architectures
Baseline: Bag of embeddings
CNN
Bi-LSTM
GCN (Graph convolution)
Self-attention

Combined with supporting linguistic knowledge
Entity masking
.e., replacing entity mentions with named entity type

Contextual word representations
BERT
ELMo




General Probing Task Performance

Type Type [|Sent | Arg Arg Ent PosL PosR PosL PosR Tree [SDP | GR GR | Fl
Head Tail |JLen | Dist Ord Exist Head Head Tail Tail Dep |Dep |Head Tail | score

Majority vote | 66.4 335|145 | 148 547 510 228 230 269 200 23.7]284]584 752| -

Length 66.4 335 ||100.0| 13.8 548 594 186 247 269 20.1 30.5]29.6|584 752| -

ArgDist 66.4 335|165 |100.0 547 775 149 230 269 198 238|353 584 752| -
BoE 71.7 476 ||61.1 | 226 973 665 33.7 415 325 363 298]|31.0] 663 7741 394
CNN ® 842 609 ||46.4 | 583 943 815 443 509 544 639 27.7|40.0]685 820/ 595
+BERT 1 | 87.2 793 |]50.6 | 253 783 698 39.6 429 599 77.5 303]35.1]656 86.9]| 66.1
GCN ® 87.6 67.4 ||18.1 | 33.1 816 728 36.8 51.1 448 488 24.1|473|732 83.0| 63.7
+BERT T | 93.4 720 [|23.7 | 332 904 739 428 50.1 44.0 483 249]48.0]729 83.0] 659
S-Att. @ | 795 565290 | 443 912 795 29.6 43.0 36.1 603 26.1]|39.6]647 79.5]| 659
+BERT 1 | 80.0 69.0 [|31.9 | 328 78.6 76.6 303 342 375 392 27.0]|382]604 79.9]| 66.9

Compared to baselines
all encoders perform superior on entity type tasks [
all encoders perform lower on sentence length task [C—
GCN performs best on SDP tree depth — n




Effect of Neural Network Encoder Architecture

Type Type Sent | Arg Arg| Ent | PosL PosR PosL PosR | Tree [SDP | GR GR | Fl

Head Tail Len | Dist Ord | Exist] Head Head Tail Tail | Dep | Dep |Head Tail | score
CNN® 842 609 464 |583 943| 81.5| 443 509 544 639|27.7]400]685 820/ 595
Bi-LSTM® 819 714 27.6 |356 90.6| 732 | 36.1 40.5 59.3 664 |257]|384]646 853|629
GCN ® 87.6 674 18.1 |33.1 81.6| 72.8| 368 51.1 448 488 |24.1|47.3]|732 83.0]| 63.7
S-Att. @ 795 565 29.0 | 443 912] 795| 29.6 43.0 36.1 603 | 26.1]|39.6]647 795 659
CNN 94.0 85.8 47.6 |88.1 98.8| 84.5| 70.7 76.1 84.0 86.5 285|440 78.0 88.6| 559
Bi-LSTM 934 812 420 |479 994| 79.2| 41.2 50.8 50.6 684 28.7]|41.7] 69.3 852 55.3
GCN 93.0 819 188 |355 86.0] 744 | 48.6 48.8 51.2 523|240]499]| 742 859|574
S-Att. 89.9 81.8 227 |32.8 757| 78.1| 341 389 40.8 44.8|26.1]382]60.7 81.1]| 57.6

Models with a local or recency bias, e.g., CNN, Bi-LSTM
perform well on probing tasks with local focus———1
perform well on distance related tasks C—]

Models with access to dependency information (GCN)

perform well on tree related tasks C—
Self-attention superior RE performance but consistently lower on the probing tasks -




Effect of Contextual Word Representations

—
Type Type Sent Arg Arg | Ent PosL PosR PosL PosR |Tree SDP GR GR || Fl
Head Tail Len Dist Ord |Exist Head Head Tail Tail |Dep Dep Head Tail ||score
CNN 940 858 476 88.1 988 |84.5 70.7 76.1 840 86.5]285 440 780 88.6]| 559
+BERT 1T 96.1 88.8 48.0 437 919 1800 569 703 80.1 875280 413 750 89.6] 61.0
CNN® 842 609 464 583 943|815 443 509 544 639|277 400 685 820|595
+BERTT 872 793 506 253 7831698 39.6 429 599 7751303 351 656 869 ]66.1
S-Att. 89.9 81.8 227 328 757 ]178.1 341 389 408 448 ]26.1 382 60.7 81.1|57.6
+BERT T 965 873 261 326 768 |78.0 347 409 40.0 44.0 257 381 622 B81.7]63.8
S-Att. ® 79.5 565 29.0 443 912795 29.6 43.0 36.1 603|261 396 647 79.5]| 659
+BERT1T 80.0 69.0 319 328 7861766 303 342 375 3921270 382 604 799]| 66.9
+BERT | 824 669 362 332 7491768 320 37.6 38.0 4131274 37.6 63.0 798| 66.7

Contextual word representations increases performance on entity type and POS related tasks—3
Uncased BERT performs equal or better on named entity and POS tasks

Leads to overall increase in RE performance ——




Conclusion

Extensive evaluation showed that
self-attentive encoders are well suited for RE
but perform lower on probing tasks
bias induced by different architectures is reflected in probing task performance
e.g., distance and dependency related tasks

However, probing task performance not correlated with RE performance

Software libraries:
REval, framework extending SentEval (conneau and Kiela, 2018 to develop and eval. RE probing
tasks
RelEx, binary RE framework based on AllenNLP (Gardneretal, 2017




Thank you

Github: https://github.com/DFKI-NL P/REval



https://github.com/DFKI-NLP/REval
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